Studying the physical behavior of human mesenchymal stem cells on the surface of hydroxyapatite after adding graphene as a reinforcement

Document Type: Original Article


1 Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran

2 Department of Clinical Medicine, Aarhus University, Denmark

3 Instituto de Cerámica y Vidrio, CSIC, Madrid, Spain



Introduction: For cell culture assays, different cells have been used so far, including Mouse osteoblast cells (MC3T3-E1), hFOB cells, fibroblast cell, Osteoblast-like MG63 cells, Human osteoblast cells (HFOB 1.19 SV40 transfected osteoblasts), Blood mononuclear cell (PBMC), mesenchymal stem cells (MSCs).
Objective: In this study, the effect of graphene sheets on the physical behavior of stem cells was investigated.
Material and Methods: The hydrothermal method and spark plasma sintering were used in this study. The analysis performed in the sample includes X-ray diffraction, Scanning Electron Microscope, Raman spectroscopy, and cell culture.
Result: The surface of the samples from the hydrophilic (in pure HA) state is somewhat close to the hydrophobic (in HA/rGO nanocomposites) state. It is clear that the physical behavior of the cells on the surface after graphene addition has changed dramatically.
Conclusion: The product of this research (HA/rGO nanostructured composite) has the potential to be used in medical applications.

Graphical Abstract

Studying the physical behavior of human mesenchymal stem cells on the surface of hydroxyapatite after adding graphene as a reinforcement


[1]. Q. Zhang, Y. Liu, Y. Zhang, H. Li, Y. Tan, L. Luo, J. Duan, K. Li and C. E. Banks, Facile and controllable synthesis of hydroxyapatite/graphene hybrid materials with enhanced sensing performance towards ammonia, Analyst 140 (2015) 5235–5242, DOI: 10.1039/c5an00622h

[2]. C. Yao, J. Zhu, A. Xie, Y. Shen, H. Li, B. Zheng, Y. Wei, Graphene oxide and creatine phosphate disodium dual template-directed synthesis of GO/hydroxyapatite and its application in drug delivery, Materials Science and Engineering C 73 (2017) 709–715,

[3]. C. Rodríguez-González, H. E. Cid-Luna, P. Salas,1 and V.M. Castaño, Hydroxyapatite-Functionalized Graphene: A New Hybrid Nanomaterial, Journal of Nanomaterials (2014) 940903: 1-7,

[4]. W. Xie, F. Song, R. Wang, S. Sun, M. Li, Z. Fan, B. Liu, Q. Zhang  and J. Wang, Mechanically Robust 3D Graphene–Hydroxyapatite Hybrid Bioscaffolds with Enhanced Osteoconductive and Biocompatible Performance, Crystals 105 (8) (2018) 1-12, doi:10.3390/cryst8020105

[5]. A. Rajesh, G. Mangamma, T.N. Sairam, S. Subramanian, S. Kalavathi, M. Kamruddin, S. Dash, Physicochemical properties of nanocomposite: Hydroxyapatite in reduced graphene oxide, Materials Science and Engineering C 76 (2017) 203–210,

[6]. Q. Wang, Y. Chu, J. He, W. Shao, Y. Zhou, K. Qi, L. Wang, S. Cui, A graded graphene oxide-hydroxyapatite/silk fibroin biomimetic scaffold for bone tissue engineering, Materials Science and Engineering C 80 (2017) 232–242,

[7]. M. Li, P. Xiong, F. Yan, S. Li, C. Ren, Z. Yin, A. Li, H. Li, X. Ji, Y. Zheng , Y. Cheng, An overview of graphene-based hydroxyapatite composites for orthopedic applications, Bioactive Materials 3 (2018) 1-18,

[8]. V. Mišković-Stanković, S. Eraković, A. Janković, M. Vukašinović-Sekulić, M. Mitrić, Y. C. Jung, S. J. Park and K. Y. Rhee, Electrochemical synthesis of nanosized hydroxyapatite/ graphene composite powder, Carbon Letters 16 (4) (2015) 233-240,

[9]. P. Yu, R-Y Bao, X-J Shi, W. Yang, M-B Yang, Self-assembled high-strength hydroxyapatite/grapheneoxide/chitosan composite hydrogel for bone tissue engineering, Carbohydrate Polymers 155 (2017) 507–515,

[10]. X. Zhao, L. Zhang, X. Wang, J. Yang, F. He, Y. Wang, Preparation and mechanical properties of controllable orthogonal arrangement of carbon fiber reinforced hydroxyapatite composites, Ceramics International 44 (2018) 8322–8333,

[11]. X. Chen, B. Zhang, Y. Gong, P. Zhou, H. Li, Mechanical properties of nanodiamond-reinforced hydroxyapatite composite coatings deposited by suspension plasma spraying, Applied Surface Science 439 (2018) 60–65,

[12]. D-Y Kim, Y-H Han, J. H. Lee, I-K Kang, B-K Jang, and S. Kim, Characterization of Multiwalled Carbon Nanotube-Reinforced Hydroxyapatite Composites Consolidated by Spark Plasma Sintering, BioMed Research International (2014) 768254, 10 pages,

[13]. S.P. Khanal, H. Mahfuz, A.J. Rondinone, Th. Leventouri,  Improvement of the fracture toughness of hydroxyapatite (HAp) by incorporation of carboxyl functionalized single walled carbon nanotubes (CfSWCNTs) and nylon, Materials Science and Engineering C 60 (2016) 204–210,

[14]. S. Kalmodia, S. Goenka, T. Laha, D. Lahiri, B. Basu, K. Balani, Microstructure, mechanical properties, and in vitro biocompatibility of spark plasma sintered hydroxyapatite–aluminum oxide–carbon nanotube composite, Materials Science and Engineering C 30 (2010) 1162–1169, doi:10.1016/j.msec.2010.06.009

[15]. C. Gao, P. Feng, S. Peng, C. Shuai, Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair, Acta Biomaterialia 61 (2017) 1–20,

[16]. E. Gholibegloo, A. Karbasi, M. Pourhajibagher, N. Chiniforush, A. Ramazani, T. Akbari, A. Bahador, M. Khoobi, Carnosine-graphene oxide conjugates decorated with hydroxyapatite as promising nanocarrier for ICG loading with enhanced antibacterial effects in photodynamic therapy against Streptococcus mutans, Journal of Photochemistry & Photobiology, B: Biology 181 (2018) 14–22,

[17]. C. Fu, H. Bai, J. Zhu, Z. Niu, Y. Wang, J. Li, X. Yang, Y. Bai, Enhanced cell proliferation and osteogenic differentiation in electrospun PLGA/hydroxyapatite nanofibre scaffolds incorporated with graphene oxide, PLoS ONE 12(11) (2017) 0188352: 1-20,

[18]. J. J. Lee, Y. C. Shin, S-J Song, J. M. Cha, S. W. Hong, Y-J Lim, S. J. Jeong, D-W Han  and B. Kim, Dicalcium Phosphate Coated with Graphene Synergistically Increases Osteogenic Differentiation In Vitro, Coatings 8 (13) (2018) 1-12, doi:10.3390/coatings8010013

[19]. R. G. Bai, N. Ninan, K. Muthoosamy, S. Manickam, Graphene: A versatile platform for nanotheranostics and tissue engineering, Progress in Materials Science 91 (2018) 24–69,

[20]. H. Nosrati, N. Ehsani, H. Baharvandi, M. Mohtashami, H. Abdizadeh, V. Mazinani, Effect of primary materials ratio and their stirring time on SiC nanoparticle production efficiency through sol-gel process, American Journal of Engineering Research (AJER) 3 (3) (2014) 317-321

[21]. H. Nosrati, M. S. Hosseini, M. Nemati, A. Samariha, Production of TiO2 Nano-Rods Using Combination of Sol-Gel and Electrophoretic Methods, Asian Journal of Chemistry 25 (6) (2013) 3484-3486,

[22]. H. Nosrati, N. Ehsani, M. Nemati, A. Samariha, Changing pH to improve efficiency of SiC nano-particles produced by chemical method, Middle-East Journal of Scientific Research 12 (9) (2012) 1250-1253, DOI: 10.5829/idosi.mejsr.2012.12.9.366

[23]. G. Bharath, Rajesh Madhu, Shen-Ming Chen, Vediyappan Veeramani, A. Balamurugan, D. Mangalaraj, C. Viswanathan and N. Ponpandian, Enzymatic electrochemical glucose biosensors by mesoporous 1D hydroxyapatite-on-2D reduced graphene oxide, J. Mater. Chem. B 3 (2015) 1360–1370, DOI: 10.1039/c4tb01651c

[24]. M. Ramadas, G. Bharath, N. Ponpandian, A.M. Ballamurugan, Investigation on biophysical properties of Hydroxyapatite/Graphene oxide (HAp/GO) based binary nanocomposite for biomedical applications, Materials Chemistry and Physics 199 (2017) 179-184,

[25]. Z. Fan, J. Wang, Z. Wang, H. Ran, Y. Li, L. Niu, P. Gong, B. Liu, S. Yang, One-pot synthesis of graphene/hydroxyapatite nanorod composite for tissue engineering, CARBON 66 (2014) 407–416,

[26]. H. Nosrati, D. Q. S. Le, R. Z. Emameh, C. E. Bunger, Characterization of the precipitated Dicalcium Phosphate Dehydrate on the Graphene Oxide surface as a bone cement reinforcement, Journal of Tissues and Materials 2 (1) (2019) 33-46, DOI: 10.22034/jtm.2019.173565.1013

[27]. A. H. Ahmadi, H. Nosrati, R. Sarraf-Mamoory, Decreasing β- three calcium phosphate particle size using graphite as nucleation sites and diethylene glycol as a chemical additive, Journal of Bioengineering Research 1(4) (2020), DOI:10.22034/JBR.2019.211371.1016

[28]. K. L. S. Castro, R. V. Curti, J. R. Araujo, S. M. Landi, E. H. M. Ferreira, R. S. Neves, A. Kuznetsov, L. A. Sena, B. S. Archanjo, C. A. Achete, Calcium incorporation in graphene oxide particles: A morphological, chemical, electrical, and thermal study, Thin Solid Films 610 (2016) 10–18,

[29]. L. Zhang , W. Liu, C. Yue, T. Zhang , P. Li, Z. Xing , Y. Chen, A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility, CARBON 61 (2013) 105 –115,

[30]. J. H. Lee, Y. C. Shin, S-M Lee, O. S. Jin, S. H. Kang, S. W. Hong, C-M Jeong, J. B. Huh & D-W Han, Enhanced Osteogenesis by Reduced Graphene Oxide/Hydroxyapatite Nanocomposites, Scientific Reports 5 (2015) 18833: 1-13, DOI: 10.1038/srep18833

[31]. R. Zhang, N. Metoki, O. Sharabani-Yosef, H. Zhu, and N. Eliaz, Hydroxyapatite / Mesoporous Graphene / Single-Walled Carbon Nanotubes Freestanding Flexible Hybrid Membranes for Regenerative Medicine, Adv. Funct. Mater. 26 (2016) 7965–7974, DOI: 10.1002/adfm.201602088

[32]. L. Fathyunes, J. Khalil-Allafi, S. O. Reza Sheykholeslami, M. Moosavifar, Biocompatibility assessment of graphene oxide-hydroxyapatite coating applied on TiO2 nanotubes by ultrasound-assisted pulse electrodeposition, Materials Science & Engineering C 87 (2018) 10–21,

[33]. Y. Zeng, X. Pei, S. Yang, H. Qin, H. Cai, S. Hu, L. Sui, Q. Wan, J. Wang, Graphene oxide/hydroxyapatite composite coatings fabricated by electrochemical deposition, Surface & Coatings Technology 286 (2016) 72–79,

[34]. Y. Liu, J. Huang, H. Li, Synthesis of hydroxyapatite–reduced graphite oxide nanocomposites for biomedical applications: oriented nucleation and epitaxial growth of hydroxyapatite, J. Mater. Chem. B 1 (2013) 1826–1834, DOI: 10.1039/c3tb00531c

[35]. M. Ðošic, S. Erakovic, A. Jankovic, M. Vukašinovic-Sekulic, I. Z. Matic, J. Stojanovic, K. Y. Rhee, V. Miškovic-Stankovic, S-J Park, In vitro investigation of electrophoretically deposited bioactive hydroxyapatite/chitosan coatings reinforced by graphene, Journal of Industrial and Engineering Chemistry 47 (2017) 336–347,

[36]. X. Xie, K. Hu, D. Fang, L. Shang, S. D. Tran and M. Cerruti, Graphene and hydroxyapatite self-assemble into homogeneous, free standing nanocomposite hydrogels for bone tissue engineering, Nanoscale 7 (2015) 7992–8002, DOI: 10.1039/c5nr01107h

[37]. H. Fadol, S.G.A. Yafei, K. Uzun, F. Musharavati, E. Zalnezhad, A.M.S. Hamouda, C-O Yun, F. Jaber, HA/rGO/Pd nanocomposite thin film coating on SST 304 - Synthesize, characterization, and properties investigations, Journal of Alloys and Compounds 741 (2018) 562-574,

[38]. H. Nosrati, R. Sarraf Mamoory, D. Q. S. Le, C. E. Bunger, R. Zolfaghari Emameh, F. Dabir,  Gas injection approach for synthesis of hydroxyapatite nanorods via hydrothermal method, Materials Characterization 2019; 110071,

[39]. H. Nosrati, R. Sarraf-Mamoory, D. Q. S. Le, C. E. Bunger, Preparation of reduced graphene oxide/hydroxyapatite nanocomposite and evaluation of graphene sheets/hydroxyapatite interface, Diamond & Related Materials 100 (2019) 107561,

[40]. H. Nosrati, R. Sarraf Mamoory, F. Dabir, M. C. Perez, M. A. Rodriguez, D. Q. S. Le, C. E. Bünger, In situ synthesis of three dimensional graphene/hydroxyapatite nano powders via hydrothermal process, Materials Chemistry and Physics 222 (2019) 251–255,

[41]. H. Nosrati, R. Sarraf Mamoory, F. Dabir, D. Q. S. Le, C. E. Bunger, M. C. Perez, M. A. Rodriguez,  Effects of hydrothermal pressure on in situ synthesis of 3D graphene/hydroxyapatite nano structured powders, Ceramics International 45 (2019) 1761–1769,

[42]. H. Nosrati, R. Sarraf-Mamoory, D. Q. S. Le, C. E. Bunger, Fabrication of gelatin/hydroxyapatite/3D-graphene scaffolds by a hydrogel 3D-printing method, Materials Chemistry and Physics 239 (2020) 122305,

 [43]. H. Nosrati, R. Sarraf-Mamoory, F. Dabir, Crystallographic study of hydrothermal synthesis of hydroxyapatite nano-rods using Brushite precursors, Journal of Tissues and Materials 2 (3) (2019) 1-8, DOI: 10.22034/jtm.2019.199830.1022