Studying the Physical Behavior of Human Mesenchymal Stem Cells on the Surface of Hydroxyapatite After Adding Graphene as A Reinforcement

Hassan Nosrati 1, Rasoul Sarraf-Mamoory 1*, Dang Quang Svend Le 2, Maria Canillas Perez 3, Cody Eric Bünger 2*

1Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran.
2Department of Clinical Medicine, Aarhus University, Denmark.
3Instituto de Cerámica y Vidrio, CSIC, Madrid, Spain.

Correspondence to: Sarraf-Mamoory R (E-mail: rsarrafm@modares.ac.ir)
Correspondence to: Bünger C (E-mail: codybung@rm.dk)

Abstract

Introduction: For cell culture assays, different cells have been used so far, including Mouse osteoblast cells (MC3T3-E1), hFOB cells, fibroblast cell, Osteoblast-like MG63 cells, Human osteoblast cells (HFOB 1.19 SV40 transfected osteoblasts), Blood mononuclear cell (PBMC), mesenchymal stem cells (MSCs).

Objective: In this study, the effect of graphene sheets on the physical behavior of stem cells was investigated.

Material and Methods: The hydrothermal method and spark plasma sintering were used in this study. The analysis performed in the sample includes X-ray diffraction, scanning electron microscope, Raman spectroscopy, and cell culture.

Result: The surface of the samples from the hydrophilic (in pure HA) state is somewhat close to the hydrophobic (in HA/rGO nanocomposites) state. It is clear that the physical behavior of the cells on the surface after graphene addition has changed dramatically.

Conclusion: The product of this research has the potential to be used in medical applications.

Keyword: Hydroxyapatite; Graphene; Stem Cell; Nanocomposites

Received: 24 December 2019, **Accepted**: 20 January 2020

DOI: 10.22034/jbr.2019.213164.1018
1. Introduction
Recently, hydroxyapatite (HA)/graphene nanocomposites have been much researched [1-5]. The main phases of these nanocomposites are HA and graphene. Additional components may be added for specific applications [6]. HA, with a chemical formula similar to that found in the mineral component of natural bone [7-9], has unique properties such as osteoconductivity, biocompatibility, and non-toxicity [10]. These properties have made HA widely used in the medical field, such as orthopedics [11]. But the mechanical properties of synthesized HA are very poor compared to natural bone and need to be improved by different strategies. One of these strategies is to use a reinforcement phase [12-14]. The reinforcement phase should be added in a limited amount to the main phase and not undermine the unique properties of HA. Among the materials used so far, carbon nanomaterials, especially graphene, have received much attention from researchers. The main reason for this is the excellent mechanical properties of graphene. The two-dimensional structure of graphene with high surface specific area has made it a good reinforcing property [15-17]. The biocompatibility and mechanical properties of graphene [18, 19] have not only improved the mechanical properties of HA, but also improved its biocompatibility properties. There are various ways to synthesize these nanocomposites. Of all the available methods, chemical methods have become more popular because they are controllable and economical. Chemical methods for the synthesis of ceramics and composites include sol-gel [20-22], hydrothermal [23-25], and precipitation [26, 27]. Among these methods, the hydrothermal method due to the high pressure and temperature makes the powders with controlled morphology and high crystallinity without further heat treatment. Graphene oxide is used in this method because it contains surface agents that are suitable sites for the HA phase nucleation [28]. Published researches show that the presence of graphene as the reinforcing phase improves the mechanical and biologic properties of HA. For cell culture assays, different cells have been used so far, including mouse osteoblast cells (MC3T3-E1) [29, 30], hFOB cells [31], fibroblast cell [32], Osteoblast-like MG63 cells [33], human osteoblast cells (HFOB 1.19 SV40 transfected osteoblasts) [34], Blood mononuclear cell (PBMC) [35], mesenchymal stem cells (MSCs) [36, 37]. In previous reports, human mesenchymal stem cells and human fetal osteoblasts were used to investigate the biological properties of pure HA [38]. In this study, similar conditions were repeated for graphene-HA nanocomposites and the effect of graphene on the behavior of these cells were investigated. The hydrothermal method has been used to synthesize hybrid powders and the spark plasma sintering method has been used to consolidate them. The presence of graphene is expected to improve the biocompatibility properties. The results of this study will be useful for the applications of these composites as implants.

2. Materials and Methods
At the powder synthesis stage, the samples were synthesized according to a previously published report [39]. After powders characterization, the powders were consolidated by spark plasma sintering (SPS) method [38].

2.1. Powders characterization
The characterization methods used in this study with the specifications are listed in Table 1.

2.2. Cell culture
Human mesenchymal stem cells and human fetal osteoblasts were cultured on sintered samples exactly as in the previous paper [38], and the results were evaluated for one day, three days, and seven days. Figure 1 schematically illustrates the steps of this research.

3. Results and discussion
Figure 2 shows the results of the synthesized powders characterization. Figure 2a shows Raman spectroscopy of the HA/rGO powders. The G peak determines the carbon-carbon stretching in the graphene, the peak D is related to structural defects, and the 2D peak is related to the number of layers of the graphene sheets. P-O symmetric stretching peaks at 962 cm$^{-1}$ and 1049 cm$^{-1}$ can be seen in the Raman
spectrum which confirms the formation of the HA phase. The results of this analysis confirm the presence of both phases in the synthesized powders [39-41]. The XRD patterns of powders (Figure 2b) are in perfect agreement with the standard pattern of HA (JPCDS 09-0432). The XRD pattern of the HA/rGO powders is quite similar to pure HA. Graphene oxide (GO) has a peak in the range of 2θ=10. After reduction, the peak disappears and rGO peak appears from reduced GO that has a marked peak in the range of 2θ=26. Likely, the amorphous structure of rGO reduces its XRD peaks intensity compared to the pure HA. The peak in 2θ=26 for HA associated with the (002) plane is more intense than the peak for HA/rGO, and covers the graphene peak [39]. Figure 2c shows the FTIR analysis of powders. After reduction of GO, the bonds associated with functional groups have been significantly reduced or disappeared (have been changed to higher absorption). These findings indicate that the synthesized powders contain rGO and HA [42, 43].

Table 1. The characterization methods used in this study

<table>
<thead>
<tr>
<th>Analysis Method</th>
<th>Instrument Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>XRD</td>
<td>X’ Pert Pro, Panalytical Co.</td>
</tr>
<tr>
<td>FTIR</td>
<td>VERTEX 70, Brucker Co.</td>
</tr>
<tr>
<td>Raman spectroscopy</td>
<td>Reinshaw invia spectrometer</td>
</tr>
<tr>
<td>FESEM</td>
<td>Hitachi S4700</td>
</tr>
</tbody>
</table>

Figure 3 shows SEM images of the HA/rGO samples fracture surface after sintering process (SPS). The black spots on the Figure 3a represent graphene sheets. Figure 3b and 3c also show that the type of fracture in the composite differs from that of pure HA previously investigated [38]. This is due to the presence of graphene sheets in the composite structure. Figure 4 shows fluorescent cell culture images on samples after 24 h and results of the MTT assay. Fig. 4a and 4b show the image (cell nucleus) of the cells stained for the HA/rGO composite sample. Figure 4c-e show the cells skeleton. By comparing these images with those of the previous paper [38], it can be seen that the surface of the samples from the hydrophilic (in pure HA) state is somewhat close to the hydrophobic (in HA/rGO nanocomposites) state. The reason for this is that the graphene oxide is somewhat hydrophobic after reduction, leaving the effect on the surface. The results of MTT assay (Figure 4f) shows the average value of the relative cell viability after 24 h, the significance level, and confidence interval of 95% (n = 8) obtained in the analysis of variance compared against the values obtained for TMX.

Figure 5 shows fluorescent cell culture images on samples after 72 h and results of the MTT assay. Figure 5a shows the image (cell nucleus) of the cells stained for the HA/rGO composite sample after 72 h. Figure 5b shows the cells skeleton. The results of MTT assay (Figure 5c) shows the average value of the relative cell viability after 72 h, the significance level, and confidence interval of 95% (n = 8) obtained in the analysis of variance compared against the values obtained for TMX. After three days, the viability has decreased slightly but is still acceptable. Figure 6 shows the results of MTT assay after seven days. The leachates obtained after 1 and 3 days had a significant effect on the survival of cells maintained in culture for 24 h. However, the decrease in relative cell viability with respect to negative control samples is not very significant, since in all cases these survival values are above 80% of the measurements for TMX. In contrast, the leachate obtained at 7 days did not significantly affect the viability of the osteoblasts used as the model, in which case cell viability was measured above 98%. It can be concluded that the leached obtained over a 7-day period showed no significant toxicity to the culture of the osteoblasts.
The presence of graphene has significantly improved the properties. Figure 7 shows fluorescent cell culture images on composite samples after 168 h. Figure 7d-f show the image (cell nucleus) of the cells stained for the HA/rGO composite sample. It is clear that the behavior of the cells on the surface after graphene addition has changed dramatically. The findings of this study, along with other published researches, will be useful in the development of tissue engineering [45-51].

Figure 1. Research steps, a) HA and HA/rGO powders, b) characterization samples, c) cell culture

Figure 2. a) Raman spectroscopy of HA/rGO powders, b) XRD analysis of powders, c) FTIR analysis of powders
Figure 3: Fracture surface of the HA/rGO samples after sintering (SPS)
Figure 4: Fluorescent cell culture images on samples after 24 h and f) results of the MTT assay

Figure 5: Fluorescent cell culture images on samples after 72 h and c) results of the MTT assay

Figure 6: Results of the MTT assay after 168 h
Figure 7: Fluorescent cell culture images on samples after 168 h

4. Conclusions
XRD, FTIR and Raman spectroscopy findings indicate that the synthesized powders contain rGO and HA. The type of fracture in the composite differs from that of pure HA. It can be seen that the surface of the samples from the hydrophilic (in pure HA) state is somewhat close to the hydrophobic (in HA/rGO nanocomposites) state. It is clear that the physical behavior of the cells on the surface after graphene addition has changed dramatically.

Conflict of interest
The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

Acknowledgments
No applicable.

References

H. Nosratii, N. Ehsani, H. Baharvandi, M. Mohtashami, H. Abdizadeh, V. Mazinani, Effect of primary materials

HA/rGO/Pd nanocomposite thin film coating on SST 304 - Synthesize, characterization, and properties

