Characterization and Biocompatibility of Hydroxyapatite Nanoparticles Extracted from Fish Bone

Esmaeil Biazar1*, Morteza Daliri J2, Saeed Heidari K3, Dehghan Navayee A4, Mahshad Kamalvand1, MohammadAli Sahebalzamani5, Faryma Royanian1, Maryam Shabankhah1, Fatemeh Farajpour L1

1Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran.
2Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
3Department of Tissue Engineering, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
4Biomaterial group, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran.
5Department of Biomaterials, Faculty of Biomedical Engineering, Science and Research, Branch, Islamic Azad University, Tehran, Iran.

Correspondence to: Biazar E. (kia_esm@yahoo.com.)

Abstract

In this study, hydroxyapatite (HAp) from fish bone was extracted by thermal calcination method, and then compared to chemical synthesized HAp. The samples were analyzed by Fourier Transform Infrared spectroscopy (FT-IR), X-Ray Diffraction analysis (XRD), Elemental analyze, Scanning Electron Microscopy, and cell tests. The FT-IR results showed well the presence of functional groups related to hydroxyapatite. The XRD results were in agreement with standard data. Size of the HAp Particle obtained about 300 and 50 nm for fish bone HAp and chemical synthesized samples, respectively. Good crystallinity and rod-like structures were showed for the fish bone HAp samples. The cell results with osteoblast-like cells showed well biocompatibility and proliferation of the cells on HAp nanoparticles. This study confirms that extracted fish bone is a promising biomaterial for bone regeneration.

Keywords: Hydroxyapatite (HAp), Fish bone, Sol-gel method, Characterization, Cell studies

Received: 9 May 2020, Accepted: 25 June 2020
DOI: 10.22034/jbr.2020.230516.1021

1. Introduction

Bone is a living tissue with hierarchical structure contains 70% calcium phosphate mostly nanoscale hydroxyapatite (HAp) crystals, and 30% organic materials including collagen, glycoproteins, proteoglycans, and sialoproteins by dry weight. Hydroxyapatite [HAp, Ca_{10}(PO_4)_{6}(OH)_2] is a type of calcium phosphates, which has opened an important role in the healing of hard tissues such as bone and tooth, due to biocompatibility and similar composition to natural bone [1-3]. In recent years, many progress has been made in the field of tissue regeneration, and the use of artificial prostheses to
treat the loss or failure of an organ or tissue [4-6]. Autograft and allograft have been considered as ideal techniques for bone grafting. Both of the techniques have showed some problems such as unwanted immunological responses and the risk of diseases transmissible by tissues and fluids [7, 8]. The Hap powders isolated from natural sources like cuttlefish bone [9], bovine bone [10-15] and fish bone [16-20] have showed some advantage of providing inexpensive raw materials from bone and teeth when compared to chemical synthesized HAp. Different methods have been applied to obtain nanometric HAp and properties similar to body bone HAp especially good biocompatibility [21-36]. In this paper, we produced and compared two type of the HAp extracted from fish bone and synthesized by sol-gel technique and studied different properties of the HAp nanopowders. Furthermore, their cytotoxicity has been studied with osteoblast-like MG-63 cell line.

2. Materials and Methods
2.1. Fish Bone Preparation

The fish bone (Caspian kutum) was washed and cleaned with hot water to remove the traces of meat and skin. The cleaned bones were mixed with 1.0% sodium hydroxide and acetone to remove protein, lipids, oils and other organic impurities (the bone and sodium hydroxide solid/liquid ratio was 1:50). After washing the bones were dried at 60 °C for 24 h.

2.2. Thermal Method

The fish bones were placed in an oven and subjected to a temperature of 600 °C with heating rate of 10 °C/min in an electrical muffle furnace in the presence of air atmosphere for 6 h, and then the samples were maintained isothermally for 6 h and cooled at oven. The calcined samples were milled by the use of milling balls.

2.3. Chemical method

The Hap nanoparticles was obtained using the sol-gel method with Ca (NO₃)₂·4H₂O and phosphoric acid (H₃PO₄) and ammonia (NH₃) as precursors (Eq.1). The phosphate solution (0.25 M) was added drop into the calcium containing solution (1M) with a magnetic stirrer. The ammonia was added and stirred till a constant pH=10 was obtained. The resultant mixture was stirred for additional 60 min for 24 h at room temperature. The obtained gel after aging was dried at 65°C for 24 h in a dry oven, and then washed repeatedly using double distilled water to remove NH₄⁺ and NO₃⁻. Finally, the powders were calcined in air at 600°C for 30 min using a heating rate of 10°C/min. [37].

\[
\text{H}_3\text{PO}_4 + 3\text{NH}_4\text{OH} \rightarrow (\text{NH}_4)_3\text{PO}_4 + 3\text{H}_2\text{O} \\
6(\text{NH}_4)_3\text{PO}_4 + 10\text{Ca} (\text{NO}_3)_2\cdot4\text{H}_2\text{O} \rightarrow \text{Ca}_{10} (\text{PO}_4)_6(\text{OH})_2 + 20\text{NH}_4\text{NO}_3
\] (Eq.1)

2.4. Characterization

The stretching frequencies of HAp samples were investigated by Fourier Transform Infrared spectroscopy (FT-IR) (BoMem Model MB100) within the range of 400 to 4000 cm⁻¹. The phase and crystallinity of the samples were evaluated X-ray diffraction (XRD) (Siemens and Bruker, Erlangen, Germany), with Cu-Kα radiation (range 5° to 70°). The phases were identified by comparing the experimental X-ray diffractions with the standard (Joint Committee on Powder Diffraction Standards (JCPDS09-0342/1996)). Size and morphology of the particles were studied by a Scanning Electron Microscope (SEM) (XL30; Philips, Eindhoven, Holland) equipped with Energy Dispersive Spectroscope (EDS) to analyze chemical composition. For cell analyses, the Human osteoblast-like MG-63 cell line (National Cell Bank(NCBI), Pasteur Institute, Iran) was cultured in DMEM/F12 medium supplemented with 10% fetal bovine serum, 1% penicillin/streptomycin, 1% L-glutamine, 1% NEAA (non-essential amino acids) and 1% pyruvate at 37 °C under a humidified atmosphere containing
5% carbon dioxide. The samples were placed in Petri dishes using a sterilized pincer; 3 ml of the cell suspension was removed by pipette and poured into the control (TCPS; Tissue Culture Poly Styrene) and experimental samples. Thereafter, all of the samples were placed separately in a Memmert incubator at 37°C for 24 and 48 hours. The samples in the polystyrene Petri dish were removed from the incubator after 24 and 48 hours and studied using an Eclipse TS-100 photonic microscope (200X; Nikon, Tokyo, Japan). Cell viability was determined from measurement of the viable cell numbers by MTT assay [34]. The colorimetric measurement was performed at a wavelength of 570 nm using a microplate reader. All experiments were run in four replicates and the data were presented as the mean value ± standard deviation (SD) of each group. The samples with cells were washed by PBS, and then fixed by glutaraldehyde (2.5%) at 4°C for 2 hours. The samples were dehydrated by alcohols, and then kept with tetroxide osmium vapors at 4°C for 2 hours. The samples were kept in a desiccator, then coated with gold, and investigated by a SEM (Cambridge Stereo-scan, S-360).

Alkaline phosphatase activity was investigated using the method described by Miyajima [38]. Briefly, the powders at concentrations of 40 µg/ml with MG-63 cells for 10 days were washed twice with PBS before adding 150 ml pNPP substrate solution (Sigma, N2770). Enzyme activity was terminated by adding 38 ml 3M NaOH after 30 min incubation at 37 °C. Alkaline phosphatase activity was then measured by the light absorbance observed at 405 nm from amount of the p-nitrophenol. All data are expressed as mean standard error of the mean unless noted (Student’s t-tests were conducted with a significance level of p<0.05). A minimum of three replicate samples were used for all experiments.

3. Results and Discussion

The FTIR spectra from the calcined samples at 600 °C were presented in figure 1. The peaks 1093, 1047 cm⁻¹ (fish bone HAp sample) and 1033 cm⁻¹ (synthesized HAp sample) were related to PO₄³⁻ groups. Hydroxyl stretching mode was observed on all the samples at 3573 cm⁻¹. The presence of B-type carbonate hydroxyapatite in fish bone HAp sample was confirmed by FTIR spectra [39]. The carbonate ions were detected at 1640 to 1460 cm⁻¹ in the fish bone HAp sample. The presence of organic material (CH) was detected as low intensity peaks at 2965 cm⁻¹ for fish bone HAp sample. A weak band of CO₂⁻ was detected in the region around 1465 cm⁻¹. It suggests small part of the PO₄³⁻ (B-type) groups in the apatite structure was replaced by CO₂⁻.

![Figure 1. FTIR spectra of the HAp extracted from fish bone (A), and chemical synthesized sample (B).](image-url)
The calcined powder at 600 °C consisted entirely of the HAp phase with well-defined peaks, as can be seen in figure 2, where the XRD patterns of the fish bone HAp sample were compared with chemical synthesized sample. In addition, there is no difference in the XRD patterns between the studied samples with standard peak.

The crystallite size of particles can be approximately calculated from the XRD patterns by Scherrer’s equation (Eq.2) [35].

\[
D = \frac{k\lambda}{\beta \cos \theta} \quad \text{(Eq.2)}
\]

Where D is the average dimension of crystallites in a direction normal to the diffracting plane hkl; \(\beta\) is the full width of the peak at half maximum intensity located at \(2\theta\); \(\lambda\) is the wavelength of X-ray radiation and \(k\) is the Scherrer constant related to crystallite shape (Table 1).

Table 1. FWHM of the (211) and average crystallite size of the HAp particles obtained from fish bone and chemical method.

<table>
<thead>
<tr>
<th>Sample</th>
<th>FWHM of 211 peak</th>
<th>Crystal size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish bone</td>
<td>0.031</td>
<td>295±12</td>
</tr>
<tr>
<td>Synthesized HAp</td>
<td>0.175</td>
<td>54±31</td>
</tr>
</tbody>
</table>

Figure 3 showed morphologies of the HAp particles by SEM analysis. The images indicated that the particles are composed of rod-like shape particles with nanometric size. This rod-like shape can be attributed to the coupled CO\(_2^3\) for PO\(_3^4\) and Na\(^+\) for Ca\(^{2+}\) substitutions that cause changes in morphology of the apatite crystals [40]. The average particle size of the HAp particles originated from the fish bones and the synthesized method were ~300 and 50 nm, respectively. Table 2 showed the EDS analysis of the extracted HAp which consisted of Oxygen (O), Phosphorous (P) and Calcium (Ca) atoms. The percentage atomic ratios of the Ca/P for the extracted HAp from fish bone, and the chemical synthesized samples were 1.82, and 1.68, respectively. The Ca/P ratios of the HAp extracted from fish bone was higher than those of the stoichiometric HAp, and these results are consistent with a previous report [40].

Table 2. Element content of the calcined HAp particles.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Atomic %</th>
<th>Ca/P ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ca</td>
<td>P</td>
</tr>
<tr>
<td>Fish bone</td>
<td>27.14</td>
<td>14.89</td>
</tr>
<tr>
<td></td>
<td>48.92</td>
<td></td>
</tr>
<tr>
<td>Synthesized HAp</td>
<td>16.33</td>
<td>9.72</td>
</tr>
<tr>
<td></td>
<td>50.45</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. X-ray diffraction spectra of the raw bone (A), chemical synthesized HAp sample (B), HAp extracted from fish bone (C), and control (HA, JCPDS-09-0432).
Figure 3. SEM images of the HAp samples extracted from fish bone (A), and chemical synthesized samples (B).

Figure 4. MTT assay for the hydroxyapatite extracted from fish bone, and chemical synthesized method. P<0.05.

Figure 4 showed cytotoxicity of the HAp particles. In the MTT assay the cells produced large amount of colored formazan that indicate all the tested powders are non-cytotoxic. None of the particles showed detrimental effect on cellular activity. The SEM images (Figure 5) also showed well cell attachment on the particles. It was observed that the HAp extracted from the fish bones (Caspian kutum) significantly promote the viability of osteoblasts. The CO$_3^{2-}$ groups are beneficial to the cell adhesion and promote cell proliferation may likely explain the difference of the bioactivity of the HAp [41]. Therefore, the hydroxyapatite contained the CO$_3^{2-}$ substitution especially in fish bone HAp exhibited higher biological activity.
Figure 5. SEM images of the cultured cells on hydroxyapatite samples extracted from fish bone (A), and chemical synthesized method.

Figure 6. The alkaline phosphatase activity of the MG63 cells on the HAp powders after culturing for up to 10 days. P<0.05.
As an early marker of the osteoblast differentiation, the alkaline phosphate activity (ALP) in the MG63 cells culture was determined to investigate the function of the powders. Figure 6 showed the ALP activity of the cells cultured on the HAp particles. It was observed that the ALP activity of the MG63 cells on the fish bone HAp was a little higher than that of the chemical synthesized HAp during the 10 days culturing period, demonstrating that there are stronger interactions between the fish bone HAp-osteoblast as compared with the chemical synthesized HAp particles (p<0.05). Previous studies have showed that the physical structure such as the crystalline formation and also the presence of the mineral ions, such as CO$_3^{2-}$, Mg$^{2+}$, may stimulate cells proliferation, differentiation, adhesion, and formation of mineralized tissue [42,43].

4. Conclusion

Biological hydroxyapatite was extracted from fish bones and compared with synthetic hydroxyapatite produced by sol-gel method. The obtained powders especially the fish bone HAp showed presence of the functional groups related to HAp and also carbonate groups in structure that is similar to carbonate presence in human bone. The MTT test, microscopic images, and ALP activity confirmed that the fish bone HAp were non-cytotoxic and promoted cell activity. The fish bone hydroxyapatite can be as a promising alternative instead of the synthetic apatite due to cheap source and containing bone substitutes.

Conflict of interest
The authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript. The authors alone are responsible for the content and writing of the paper.

Acknowledgments
No applicable.

References

[40] Boutinguiza M., Pou J., Comesañ R., Lusquíños F., de Carlos A., León B.,

