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Abstract  

The second most prevalent age-related neurodegenerative disease is Parkinson's (PD) and Genes associated 

with human diseases like Parkinson are descriptive. Genome-wide association study (GWAS) is used to 

classify the genes associated with Parkinson’s and other diseases. The information of identified genes 

empowers scientists to early diagnose, treat, and stop diseases. Due to the complexities of the illness, 

identifying such genes is a challenging task. In this article, we apply two methods of feature selection to 

choose a subset of genes that are used to predict PD with high precision in classification. The chromosome 

corresponding to selected features is analyzed by Perturbation-based Feature Selection (PFS) and Hilbert-

Schmidt independence criterion (HSIC)-Lasso. These algorithms are used to identify how chromosomes play 

an important role with respect to PD. We used a dataset consist of 50 predominantly patients gene expression 

profiles with early-stage Parkinson's disease (PD) and 55 normal GEO samples. These methods provide a 

series of features involved in disease-specific processes that are applied to prioritize candidate genes in GWAS 

loci. 
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1. Introduction 

Parkinson's disease as a neurological disease 

progresses during time. It causes moving disabilities, 

which starts with hand involuntary quivering 

movement and continues to movement difficulties and 

falling down because of balance loss. 

Genome-wide association studies (GWAS) have 

linked thousands of single nucleotide polymorphisms 

(SNPs) to the risk of Parkinson's disease (PD), a 

neurodegenerative and age-related disorder, with a 
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total lifetime risk of about 10 [1].  People diversity is 

a result of genetic diversity on SNPs. Differences in a 

DNA is occurred by each SNP. Furthermore, in the 

prediction of person response to specific medication, 

SNPs are valuable. Tracking genes of heritage disease 

is applicable with the aim of SNPs.   

Advances in identifying DNA sequencing have a 

significant impact on disease detection through 

sequencing a single suspect tissue. Parallel 

sequencing technologies are used to identifying 

sequence the normal and tumor skin cells genomic 

DNA [2] . 

 Genetic association research identifies specific 

chromosome regions containing only a small number 

of genes and it helps to diagnose a particular disease 

susceptibility gene. GWAS has several advantages 

over alternative methods. GWAS makes a complete 

genome sequence in an unbiased manner and has the 

ability to classify various risk factors while the 

candidate gene studies select genes for analysis based 

on known or suspected disease mechanisms.  

 GWAS requires the screening of thousands of samples 

using hundreds of thousands of PNS labels found in 

the human genome. These algorithms are used to 

compare the occurrence of any single PNS alleles or 

genotypes between disease and control cases. This 

analysis identifies regions (loci) with statistically 

meaningful variations in allele or genotype 

frequencies across cases and controls.  

On a chromosome, there are specific points in which 

genetic markers or genes are located; these specific 

spots are called loci.  

This study has been organized as follows. Section 2 

reviews related works to GWAS and machine learning 

techniques. In section 3, we explain our utilized 

feature selection and classification algorithms. 

Section 4 describes selected genes in more details. 

Finally, in section 5, we conclude the study and 

propose and future works. 

 

2. Related Work  

 

Machine learning algorithms are widely used in 

various studies to identify the genes associated with 

various diseases. In [3] , a comparison between 13 

popular open-source ML algorithms is done. They 

analyzed their performance over a set of 165 

supervised classification problems in terms of best-

balanced accuracy and then studied the impact of 

hyper-parameter tuning and model selection. In 

addition, they looked at how algorithms to cluster 

across the problems tested and performed a set of 

algorithms that maximize performance across 

datasets. Similar to this method, we implement a 

clustering algorithm in our previous work [4] 

 Genome-wide association studies (GWAS) are used 

in several experiments to explain various disorders' 

genetic nature, including Parkinson's disease. A meta-

analysis of Parkinson's disease genome-wide PNS 

data is performed by [4] using a common set of 

7,893,274 variants in 13,708 cases and 95,282 

controls. They used a semi-customized genotyping 

array to replicate each locus in an independent sample 

series, used the 26 genome-wide important candidate 

loci involved in Parkinson's disease from the primary 

meta-analysis, and then investigated the association of 

six loci associated with the risk of Parkinson's disease. 

They tested whether there were multiple independent 

risk alleles in each of the 26 genome-wide; in the 

discovery process, also 22 independent risk loci for 

Parkinson's disease are found, and in the replication 

phase, two replicated loci confirmed in the replication 

process, and four loci found by a second risk allele.  

 In [5] authors conducted a GWAS of around 7,607 

PD-risk PNS with an additional 23,759 high relation 

disequilibrium-associated variants paired with eQTL 

gene expression. They examined different sets of 

genes associated with PD risk loci and related genes 

to nearby super-enhancers, which are frequently 

found in close proximity to major genes in the 

completely genome-wide screen. The speed of 

generating information outruns the speed of 

technology for designing capacious storage memory. 

For example, a clinical examination that involved 

recording the vital signals has to record the data, day 

and night. Moreover, this data will be stored for future 

assessment and checking the patient's treatment 

behavior in the long run. In [6], the authors presented 

a data compression method to improve the storage 

size and increase the transfer speed while the GWAS-

like data are processing. Their method is applicable to 

the sparse signal in genome-wide association studies. 

There is some research for the optimal approach in the 

control area concerning the factorized systems and 



Rafieipour H.  /Bioengineering Research 2020;2(4): 1-11 

3 

 

data packet which can be used on the GWAS field [7] 

[8]. The authors in [8] claimed that the additional 

variable in the system state space is used to improve 

the optimal controller's performance in the presence 

of noise. The results of the simulations performed in 

the content software show the proposed method's 

efficiency compared to the conventional approaches 

[7]. 

 In [9], a meta-analysis is performed between the 

PDWBS (Web-Based Parkinson's disease Study) 

GWAS and the findings for the top 10,000 PD meta-

analysis models of more than 13,000 cases and 95,000 

controls. The researchers used an inverse-variance 

weighted approach to combine association statistics. 

 In [10] a Weighted Protein-Protein Interaction 

Network Analysis (WPPINA) pipeline is used to 

define PD-specific impacted pathways and to stratify 

candidate genes within PD-GWAS loci. A hereditary 

type of PD is used to identify seed proteins and 

construct a protein network for Parkinson's genetics. 

They used 32 relevant SNPs, mapping them to the 

GWAS-loci and matching those encoding proteins to 

the PD-specific risk-processes highlighted by 

WPPINA to assist the gene rank within the PD-

GWAS loci. The researchers have statistically 

confirmed their findings by generating 100,000 

random sized gene-sets and measuring P-values.  

 A combination of multiple Microarray and RNA-seq 

platforms as a gene quantification technology is 

proposed in [11] to design a multiclass study to collect 

a higher number of samples and ensure the 

heterogeneity of their analysis.  In the first step, they 

selected the possible Differentially Expressed Genes 

(DEGs) to recognize different types of Leukemia and 

then performed the minimum-Redundancy 

Maximum-Relevance (mRMR) feature selection 

algorithm to choose the most significant genes and 

evaluate the classifiers. Additionally, they performed 

different classification algorithms such as Support 

Vector Machines (SVM), Random Forest (RF), k-

Nearest Neighbor (k-NN) and Naive Bayes (NB) and 

compared their performance with ANOVA test to 

decide if the classifiers have meaningful differences 

among them. 

 A study on DNA microarray datasets of existing 

feature selection methods is given in [12]. They study 

the characteristics of microarray data sets and the 

feature selection methods applied to the DNA micro 

array data analysis field, which due to its large number 

of features and the limited sample sizes is a difficult 

challenge for machine learning researchers. The 

selection of features has become an important step 

since the advent of microarray data classification to 

reduce the number of features (genes); the authors 

studied nine binary microarray datasets that suffer 

from several challenges such as class imbalance, 

overlap, or dataset shift. They divided datasets with 

Distribution optimally balanced stratified cross-

validation and evaluated them using Support Vector 

Machine (SVM) and naive Bayes as classifiers, and 

used classification accuracy, and precision on the test 

partitions. 

 A genome-wide approach to RNAi screening, initially 

in Drosophila cells and confirmed in HeLa cells, is 

used [13] to classify 20 genes that have retained their 

role in promoting Parkinson translocation and 

mitophagy.  

Evolutionary algorithms have been utilized for 

identifying disease-related genes as well. An 

overview of the analysis and monitoring of PD in 

humans is provided in [14]. The authors described 

computational approaches using evolutionary 

algorithms (EAs) that provide clinically relevant 

objective measures to recognize and to quantify PD, 

both in humans and animal models. They used EAs to 

provide robust classifiers for discrimination between 

disease and controls, and between disease types. 

 

3. Feature selection 

3.1. Feature Selection Methods 

In machine learning and statistics, feature selection is 

the method of selecting a subset of relevant features, 

while we have needless or unrequired features, 

without incurring much loss of information. Feature 

selection methods are often used in domains where 

there are many features and relatively few samples.  

Feature selection can be most beneficial in reducing 

the dimension of the data to be processed by the 

classifier, reducing execution time and improving 

predictive accuracy [15].  

 Many different feature selection methods are widely 

used for micro array analysis. Aforementioned 

methods attempt to eliminate irrelevant and useless 

features so that the classification of new cases will be 



Rafieipour H.  /Bioengineering Research 2020;2(4): 1-11 

4 

 

more accurate. The popular micro-array data analysis 

methods are available in [16]. 

 Feature selection process has been divided into four 

principal steps: feature subset generation, evaluation 

of that subset, ending criterion and validation of 

result. Generating the feature is done by e heuristic 

search method, which uses searching approaches such 

as sequential, complete, and random search to build 

features subsets. 

Then in the second step, we check the produced subset 

whether it is superior to the prior or not and as a result, 

we return the greatest subset will be returned. 

 The two procedures are repeated up to reaching the 

stopping criterion. The ultimate greatest feature subset 

is validated by past knowledge or by applying 

different tests. Figure 1 shows the feature selection 

process [17]. 

 Algorithms of feature selection are categorized into 

three types [18]: 

• The filters: They select features from the data 

without any learning required.  

• The wrappers: They employ learning 

techniques for selecting useful features. 

• The embedded: combine the feature selection 

step and the classifier, structure [16]. 

 

 

 
 

Figure 1. Feature Selection Process 

 

The best feature subset is selected by applying 

statistical standards. Filter-based feature selection 

techniques are categorized to two major types such as 

feature ranking and subset selection [19]. 

Simple feature ranking methods include the use of 

statistical metrics, like the correlation coefficient. The 

most common subset selection approaches are 

wrapper-based approaches [20]. 

We explain applied feature selection methods in 

section 3.1.1 and 3.1.2. 

 

3.1.1 Perturbation-based feature selection 

Data perturbation is the procedure of eliminating 

samples from the original dataset and forming couple 

of shortened datasets [21]. 

Dataset perturbation is used by researchers to inspect 

their results by implementing feature selection 

methods on the improved datasets. Sometimes the 

original dataset and provide a ranked list for each of 

the datasets and measure the stability between the 

ranked lists [22]. Perturbation-based feature selection 

method (PFS) selects a smaller number of features 

while achieving the classification accuracy of other 

methods.  We employ PFS to choose the most affected 

genes to discriminate between PD patients and normal 

patients. Due to its inherent structure of the algorithm, 

PFS removes noisy and irrelevant features and then 

selects a small subset of features that are not 

correlated with each other. 

 

3.1.2 Hilbert-Schmidt Independence Criterion 

Lasso based feature selection 

Feature selection is also known as variable selection 

in statistics.  Least Absolute Shrinkage and  Selection  

Operator  (LASSO)  and  Least  Angle  Regression  

(LARS)  are  the  most  important methods of variable 

selection.  LASSO is a subset selection based on least 

square regression [23] and LARS is a forward stage 

wise feature selector [24].  It is an efficient way of 

solving the same problem as LASSO. [25] Introduce 

a non-linear feature selection method, which is useful 

for high-dimensional and small sample data and the 

instances numbers, called Hilbert-Schmidt 

Independence Criterion Lasso (HSIC Lasso).  HSIC 

Lasso is another feature selection method that we 

employ in our project to select non-redundant features 

related to PD using a set of kernel functions.   

It should be pointed out that having HSIC-Lasso gives 

us superior accuracy of classification however; lesser 

feature subset is selected versus both LARS and Lasso 

methods. 

3.1.3 Stratified K-fold cross-validation 

Cross-validation is another alternative method to 

examine the durability of feature selection methods.   

By applying cross validation procedure, the original 

data is divided into n folds. Training and testing data 

are provided by choosing n-1 folds as training and the 
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last part as testing data. To have an improved results, 

the procedures are executed n times [26].   

In case of a dichotomous classification, this means 

that each fold contains roughly the same proportions 

of the two types of class labels.  In other words, 

stratification is the process of rearranging the data to 

ensure each fold is a valid delegate of the whole. For 

example, in a binary classification problem where 

each class comprises 50% of the data, it is best to 

arrange the data such that in every fold, each class 

includes around half the instances.  Stratification is 

generally a better scheme, in terms of both bias and 

variance, when compared to regular cross-validation 

[27].  In this project, we use stratified 4-fold cross-

validation where proportion of each label class is 

preserved in each fold. 

 

3.2 Classification Methods 

3.2.1 Support Vector Machine (SVM) 

Support Vector Machines introduced by [28] is 

considered one of our applied classification 

approaches, which allows a high accuracy in 

comparison with other classifiers such as decision 

trees and logistic regression. This work solves linear 

and non-linear problems and it is known for its kernel 

trick to handle nonlinear problems. Given a set of 

training samples as relating to one or the other of two 

classes, the algorithm creates a line or a hyperplane, 

which separates the data into classes. In SVM model 

the samples are represents as points in the space and 

mapped them into separated classes, which are 

divided by a clear gap that is as wide as possible. New 

samples are then mapped into the same space and go 

to a predicted class based on which side of the gap 

they are fall. 

 

3.2.2. Random Forest 

Applying Random Forest for SNP discovery is related 

to human disease and it has been grown in recent 

years. We examine the use of random forest, which is 

a supervised classification algorithm that uses a set of 

classification trees. It was developed by [29]. It is an 

improved of previous work on classification and 

regression trees or (CART) [30] and bootstrap 

aggregating [31].  CART is a useful tool for 

developing a classifier and it shows a binary tree. 

Bagging is a technique for sampling data in which 

sampled data is accompanied with replacement and 

the classifier is developed by the bootstrap sample. 

After several repetitions, results are aggregated over 

all trees to form a less variable classifier with a lower 

prediction error in comparison with the original 

classifier. In Bagging, the variance reduction is 

restricted by the correlation between trees; while 

correlation is increased or maximized, the potential 

for reduction is decreased.  

In the RF algorithm, CART trees are bagged and to 

drop the association between trees, instead of 

searching over all p variables at each node the bagging 

process is done. The method divides the data 

continuously up to no more splits are possible or there 

are no more variables. Since the bagging process is 

part of RF algorithm, RF leaves are unpruned and 

bagging helps to minimize the variance of lacking 

pruning. In other hand, CART helps to the stability by 

using pruning the trees. 

 

3.2.3 Adaboost 

Another classification algorithm is AdaBoost, which 

is a machine learning meta-algorithm developed by 

[32] .In this project, it is utilized in conjunction with 

the SVM algorithm to improve accuracy and 

performance. In some machine learning algorithms, 

each sample consists of a huge number of features, 

(for instance, in this study, there are more than 20,000 

features for each sample). Consequently, evaluating 

each feature reduces the speed of classifier training 

and power of prediction. The Adaboost training 

method selects only essential features and does not 

need to process irrelevant features to improve 

predictive power, reduce dimensionality, and 

potentially improve execution time. 

 

3.3    Neural Network 

3.3.1    Auto encoder 

Auto encoder (AE) is a type of neural networks that 

aims to copy input values to the output values. They 

compress and reduce the input into a latent-space 

form, and then build the output from this form. The 

network is comprised of two parts so that the first part 

compresses and reduces the input into a latent-space 

form and can be an encoding function h = f(x); the 

second part reconstructs the input from the latent-

space form and can be a decoding function r = g (h). 

In our project, the input of the auto encoder is more 
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than 22000 genomes, which is compressed into 100 

genomes, then we apply SVM algorithm on the 

compressed genomes that are extracted from auto 

encoder algorithms. 

 

4. Experiments 

The data set we used in this study consist of 50 

predominantly patients gene expression profiles with 

early stage Parkinson's disease (PD) and 55 normal 

GEO samples under accession number GSE6613 [33].  

Expression levels of 22,283 genes were calculated by 

the means of the human genome array Affymetrix. 

The aim of the project is to find a subset of genes that 

are more useful in predicting or diagnosing 

Parkinson's disease and can be used to create a model 

for the detection of a new patient with a disease. 

 We are finding two main obstacles in dealing with 

our Genomic Dataset. First, it has a large scale that 

make it difficult to provide accurate evaluation of 

the data. There are a number of genes with negligible 

impact in, which are often considered irrelevant or 

noisy genes. The identification and elimination of 

irrelevant genes is an essential phase in our applied 

algorithms. Second obstacle is that, there is a high 

correlation between some of the existing genes. In 

the method, feature selection algorithms identify 

main features while eliminating redundant features. 

We apply two methodologies for the collection of 

functions, namely PFS and HSIC-Lasso [25]. When 

we have a specified subset of genes using PFS or 

HSIC-Lasso, we use Support Vector Machine 

(SVM), Random Forest, Adaboost and Auto 

Encoder as classifiers to have a model based on the 

training dataset and selected subset of genes, and 

then the model is tested and validated on the test set.  

 PFS and HSIC-Lasso select gene features with a 

prediction accuracy of 86 and 94 respectively to PD 

and normal patients. 

In this project, we have experimented a dataset 

containing the gene expression profiles of 50 patients 

predominantly with early-stage Parkinson's disease 

(PD) and 55 normal samples from GEO under 

accession number GSE6613 [33]. The expression 

levels of 22,283 genes were measured using an 

Affymetrix Human Genome Array.  

 The first stage of our project is the preprocessing 

phase that we checked whether there are Nan values 

alternatively, not and then normalized the genes 

before the training phase.  

 We applied PFS to the dataset GSE6613 where a 

subset of features is chosen by PFS to differentiate 

between normal and patient sample. We employed 

different classification algorithms such as SVM, 

Random Forest and AdaBoost and reported the results 

in the table 1. You can see the highest obtained 

accuracy is 86.03 and standard deviation of 4.8113 

with SVM classification algorithm for 10 times run.  

  Then we applied HSIC-Lasso to dataset GSE6613 in 

two different approaches. In the first approach, HSIC-

Lasso has been implemented on the whole dataset, and 

88 features are selected then we employed different 

classification algorithms such as SVM, Random 

Forest and AdaBoost to train the model and evaluate 

it as well and summarized the results in table 1. The 

highest obtained accuracy is 94.9 with SVM 

classification algorithm for 10 times run. In the second 

approach, the feature selection mechanism only 

applies to the training dataset. The achieved accuracy 

in the latter approach is more accurate because feature 

selection is applied separately on the train dataset and 

test dataset. Therefore, it is possible to identify 

whether the significant features are approximately the 

same in both the test dataset and the training dataset 

or not. 

 In table 1, we have summarized the results of applying 

PFS and HSIC-Lasso with different classification 

methods and summarized the average classification 

accuracy and the average number of features over ten 

runs. We have also run PFS 100 times; the average 

classification accuracy is 83.56 with the standard 

deviation of 6.4165. Then we extract the chromosome 

of selected features and report on the concentrated loci 

of the selected features. In figure 2, we have plotted 

the distribution of all the chromosomes (in the whole 

dataset) and the distribution of chromosomes 

containing selected features using PFS (in the reduced 

dataset). We can see that PFS has chosen features 

from all the chromosomes, where in eight 

chromosomes, namely 3, 6, 7, 10, 13, 17, 19, and x the 

frequency is higher than the complete dataset. Next, 

we investigate the distribution of chromosomes 

corresponding to selected features by HSIC-Lasso. 
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Table 1. Accuracy of selected features by the means of PFS and HSIC-Lasso with different classifiers 

 

Method Classifier Feature Selections CA % 

 SVM 65.2 86.03% 

PFS Random Forest 63.1 86.0% 

 AdaBoost 52.2 82.0% 

 SVM 63.3 94.9% 

HSIC-Lasso Random Forest 63.3 74.0% 

 AdaBoost 63.3 84.0% 

 

 

 
Figure 2. Frequency of chromosomes appearing in the whole dataset compared to Frequency of chromosomes 

containing reduced dataset using PFS 

 

 Figure 2 shows the frequency of chromosomes 

containing in the whole dataset compare to the 

frequency of chromosomes appearing in selected 

features using HSIC-Lasso over twenty runs. We can 

see the chromosomes 1, 4, 6, 7, 8, 14, 15, 20, 21, 22, 

and X are over-expressed. It is the reason that to 

examine whether the over-expressed chromosomes 

perform a crucial role concerning Parkinson diseases.  

 

 
Figure 3. The frequency of chromosomes appearing in the whole dataset compared to Frequency of chromosomes containing 

selected features by HSIC-Lasso 
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We also use Jaccard similarity to measure the 

similarity between chromosome sets and selected 

features using PFS and HSIC-Lasso and report the 

result in the table 2. We can see we have a low 

similarity between selected features of PFS and HSIC-

lasso.  

 
Table 2. Jaccard Similarity between chromosomes and selected features with PFS and HSIC-Lasso 

 

Jaccard Similarity between PFS and HSIC-Lasso Value 

Chromosomes 0.875 

Selected features 0.0059 

 

 

 

We also show the association between selected genes 

using PFS and HSIC-Lasso in figure 4 and 5. The heat 

map in figure 4 indicates there is very little association 

between selected genes. We can also see in figure 5 

that selected genes by HSIC-Lasso have a very little 

correlation. We need a small correlation within 

selected features but the high correlation with the 

classification outcome.  

 

 

 
 

 

 

Figure 4. Heat map generated using the top-ranked genes selected by PFS 
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Figure 5. Heat map generated using the top-ranked genes selected by HSIC-Lasso 

 

 

In table 3, we summarized the correlations between 

selected genes using PFS and the 54 genes reported by 

[4], [9], [13] and [10]; Pearson Correlation is used for 

calculating the correlation between genes. We have 

reported only correlations more than 0.7. We note that 

the highest correlation is SNCA and GSPT1. SNCA 

has a high effect on Parkinson Disease (related genes 

to Parkinson Disease based on related works); The 

result shows this gene has a high correlation with  

selected genes by PFS algorithm. 

 

Table 3. The correlation between related genes and selected genes using PFS 

 

PFS Related Genes to Disease CORRELATION  

GSPT1 SNCA 0.90  

MKRN1 SNCA 0.89  

FECH SNCA 0.86  

SACMIL VPS13C 0.76  

EFR3A VPS13C 0.76  

PEX11A FZD5 0.71  

AK024527 DDRGK1 0.70  

 

 We compared the correlations between selected 

features by HSIC-Lasso and the reported genes as 

well. We have just reported the correlations of more 

than 0.6.  

 
Table 4. Correlation between related genes and selected genes using HSIC-Lasso 

 

HSIC-Lasso Related Genes to Disease CORRELATION  

NUDT4P1 ZDHHC8P1 0.69  

AL109691 SPPL2B 0.66  

CREM FZD5 0.63  

SEC61B MMP16 0.62  
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We have shown in table 4 that unlike PFS, there are 

no significant correlations in this case. It could be 

because the selected features contain new and not 

previously investigated genes related to PD.  

 

5. Conclusion 

Through this study, we point out machine learning 

methods, which are applied to defined disease-

specific biological processes. These methods 

provide a series of features involved in disease-

specific processes that are applied to prioritize 

candidate genes in GWAS loci. In this work, we 

implemented two different feature selection 

methods that select a subset of genes that can be 

used to discriminate PD patients from normal 

samples. However, an accurate splitting of dataset 

is adopted for training and testing data, we observe 

that all applied feature selection methods work well. 

We have also analyzed the chromosome 

corresponding to selected features by PFS and 

HSIC-Lasso to identify how the chromosomes play 

an important role with respect to PD. 
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