Gold Nanorods Protected with Thiol-end Capped Diblock Copolymer (PHEMA-b-PVEAQ-SH): Synthesis and Applications in Drug Delivery

Document Type: Original Article

Authors

Halal Research Center of IRI, FDA, Tehran, Iran

10.22034/jbr.2019.190491.1011

Abstract

Theranostic nanoparticles with multifunctional ability have been emerging as a new platform for biomedical applications such as imaging, sensing and drug delivery. Despite gold nanorods (GNRs) being an excellent nanosource with multifunctional versatility, they have certain limitations in biomedical applications, which include surfactant toxicity, biological stability and controlled drug release kinetics. Hence, we fabricated thiol-end caped diblock copolymer [poly(2-hydroxyethyl methacrylate)-b-poly[(N-4-vinylbenzyl), N,N-diethylamine)]; [PHEMA-b-PVEA] encapsulated gold nanorods (GNRs) via RAFT polymerization techniques. pH responsive drug release ability of the synthesized biocompatible nanocomposite were also investigated .Also the success of coating was verified by fourier transform infrared (FTIR), zeta potential, transmission electron microscopy (TEM), dynamic light scattering (DLS), proton nuclear magnetic resonance (1H NMR) spectroscopies, gel permeation chromatography (GPC) analysis and UV-Vis spectroscopy. We developed a GNRs@copolymer as narnocarier by using MTX-loading and to enhanced pharmacokinetics. The anti-cancer drug (MTX) was encapsulated into the GNRs@copolymer by the electrostatic force. The MTX-encapsulation efficiency was calculated to be 97% . Release behaviors of MTX from the nanocomposite shown that the rate of MTX release could be controlled by pH value.

Graphical Abstract

Gold Nanorods Protected with Thiol-end Capped Diblock Copolymer (PHEMA-b-PVEAQ-SH): Synthesis and Applications in Drug Delivery

Keywords


Venkatesan R., Pichaimani A., Hari K., Balasubramanian P. K., Kulandaivel J., Premkumar K., Doxorubicin conjugated gold nanorods: a sustained drug delivery carrier for improved anticancer therapy. Journal of Materials Chemistry B 2013; 1; 1010-1018.

 [2] Nishiyama N., Kataoka K., Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacology & therapeutics 2006; 112: 630-648.

[3]     Li C., Wallace S. Polymer-drug conjugates: recent development in clinical oncology. Advanced drug delivery reviews 2008; 60: 886-898.

[4]     Loo C., Lowery A., Halas N., West J.,  Drezek R., Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano letters 2005; 5: 709-711.

[5]     Dong Y., Qiao T., Kim D., Parobek D., Rossi D., Son D. H., Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano letters 2018; 18: 3716-3722.

[6]     Bagalkot V., Zhang L., Levy-Nissenbaum E., Jon S., Kantoff P. W., Langer R., Farokhzad O. C. Quantum dot− aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano letters 2007; 7: 3065-3070.

[7]     Derfus A. M., Chen A. A., Min D. H., Ruoslahti E., Bhatia S. N., Targeted quantum dot conjugates for siRNA delivery. Bioconjugate chemistry 2007; 18: 1391-1396.

[8]     Walther C., Meyer K., Rennert R., Neundorf I., Quantum dot− carrier peptide conjugates suitable for imaging and delivery applications. Bioconjugate chemistry 2008; 19: 2346-2356.

[9]     Ghamkhari A., Agbolaghi S., Poorgholy N., Massoumi B., pH-responsive magnetic nanocomposites based on poly (2-succinyloxyethyl methacrylate-co-methylmethacrylate) for anticancer doxorubicin delivery applications. Journal of Polymer Research 2018;  25: 37.

[10] Lee J. H., Lee K., Moon S. H., Lee Y., Park T. G.,  Cheon J., All‐in‐one target‐cell‐specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angewandte Chemie International Edition 2009; 48: 4174-4179.

[11] Kohler N., Sun C., Fichtenholtz  A., Gunn J., Fang C., Zhang M., Methotrexate‐immobilized poly (ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small  2006; 2: 785-792.

 [12] Wang H., Huff  T. B., Zweifel  D. A., He  W., Low  P. S., Wei  A., Cheng  J. X., In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proceedings of the National Academy of Sciences 2005; 102: 15752-15756.

[13] Smith P. A., Nordquist C. D., Jackson T. N., Mayer T. S., Martin B. R., Mbindyo J., Mallouk T. E., Electric-field assisted assembly and alignment of metallic nanowires. Applied Physics Letters 2000; 77: 1399-1401.

[14] El-Sayed M. A., Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of chemical research 2001; 34: 257-264.

[15] Petrova H., Juste J. P., Pastoriza-Santos I., Hartland G. V., Liz-Marzán L. M., Mulvaney P. , On the temperature stability of gold nanorods: comparison between thermal and ultrafast laser-induced heating. Physical Chemistry Chemical Physics 2006;  8: 814-821.

[16] Jabbari S., Ghamkhari A., Javadzadeh Y., Salehi R., Davaran S., Doxorubicin and chrysin combination chemotherapy with novel pH-responsive poly [(lactide-co-glycolic acid)-block-methacrylic acid] nanoparticle. Journal of Drug Delivery Science and Technology 2018; 46: 129-137.

 [17] Mbindyo J. K., Mallouk T. E., Mattzela J. B., Kratochvilova I., Razavi B., Jackson T. N., Mayer T. S., Template synthesis of metal nanowires containing monolayer molecular junctions. Journal of the American Chemical Society 2002; 124: 4020-4026.

[18] Cai L.T., Skulason H., Kushmerick J.G., Pollack S.K., Naciri J., Shashidhar R., Allara D.L., Mallouk T.E., Mayer T.S., Nanowire-based molecular monolayer junctions: synthesis, assembly, and electrical characterization. The Journal of Physical Chemistry B 2004; 108: 2827-2832.

[19]   Venkatesan R., Pichaimani A., Hari K., Balasubramanian P. K., Kulandaivel, J., Premkumar K., Doxorubicin conjugated gold nanorods: a sustained drug delivery carrier for improved anticancer therapy. Journal of Materials Chemistry B 20013; 1: 1010-1018.

[20]  Jang B., Park J. Y., Tung C. H., Kim I. H., Choi, Y., Gold nanorod− photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS nano 2011;  5: 1086-1094.

[21]   Alivisatos P., The use of nanocrystals in biological detection. Nature biotechnology 2004; 22:  47.

 [22]  Nusz G. J., Curry A. C., Marinakos S. M., Wax A., Chilkoti, A., Rational selection of gold nanorod geometry for label-free plasmonic biosensors. ACS nano 2009; 3: 795-806.

[23] Castellana E. T., Gamez R. C., Gómez M. E., Russell D. H., Longitudinal surface plasmon resonance based gold nanorod biosensors for mass spectrometry. Langmuir 2010; 26: 6066-6070.

[24] Huang X., El-Sayed I. H., Qian W., El-Sayed M. A., Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society 2006; 128: 2115-2120.

[25] Bonoiu A.C., Mahajan S.D., Ding H., Roy I., Yong K.T., Kumar R., Hu R., Bergey E.J., Schwartz S.A. Prasad P.N., Nanotechnology approach for drug addiction therapy: gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons. Proceedings of the National Academy of Sciences 2009; 106: 5546-5550.

[26] Wijaya A., Schaffer S. B., Pallares I. G., Hamad-Schifferli K., Selective release of multiple DNA oligonucleotides from gold nanorods. ACS nano 2008;  3: 80-86.

[27] Imura K., Nagahara T., Okamoto H., Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. The Journal of Physical Chemistry B 2005; 109: 13214-13220.

 [28] Durr N. J., Larson T., Smith D. K., Korgel B. A., Sokolov K., Ben-Yakar A., Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano letters 2007;  7: 941-945.

[29] York A. W., Kirkland S. E., McCormick C. L., Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: stimuli-responsive drug and gene delivery. Advanced drug delivery reviews 2008; 60: 1018-1036.

[30] Sutton D., Nasongkla N., Blanco E., Gao J., Functionalized micellar systems for cancer targeted drug delivery. Pharmaceutical research 2007;  24: 1029-1046.

 [31] Chen J., Liu M., Gong H., Huang Y., Chen C., Synthesis and self-assembly of thermoresponsive PEG-b-PNIPAM-b-PCL ABC triblock copolymer through the combination of atom transfer radical polymerization, ring-opening polymerization, and click chemistry. The Journal of Physical Chemistry B 2011; 115: 14947-14955.

[32] Massoumi B., Mousavi-Hamamlu S. V., Ghamkhari A., Jaymand, M., A novel strategy for synthesis of polystyrene/Fe3O4 nanocomposite: RAFT polymerization, functionalization, and coordination techniques. Polymer-Plastics Technology and Engineering 2017; 56: 873-882.

[33] Jiang X., Zhang G., Narain R., Liu S., Fabrication of two types of shell-cross-linked micelles with “inverted” structures in aqueous solution from schizophrenic water-soluble ABC triblock copolymer via click chemistry. Langmuir 2009; 25: 2046-2054.

[34] Deng C., Chen X., Yu H., Sun J., Lu T., Jing X., A biodegradable triblock copolymer poly (ethylene glycol)-b-poly (l-lactide)-b-poly (l-lysine): Synthesis, self-assembly, and RGD peptide modification. Polyme 2007; 48: 139-149.

[35] Taktak F., Bütün V., Novel zwitterionic ABA-type triblock copolymer for pH-and salt-controlled release of risperidone. International Journal of Polymeric Materials and Polymeric Biomaterials 2016; 65: 151-161.

[36] Davaran S., Ghamkhari A., Alizadeh E., Massoumi B., Jaymand M., Novel dual stimuli-responsive ABC triblock copolymer: RAFT synthesis,“schizophrenic” micellization, and its performance as an anticancer drug delivery nanosystem. Journal of colloid and interface science 2017; 488: 282-293.

 [37] Bonengel S., Haupstein S., Perera G., Bernkop-Schnürch A., Thiolated and S-protected hydrophobically modified cross-linked poly (acrylic acid)–a new generation of multifunctional polymers. European Journal of Pharmaceutics and Biopharmaceutics 2014; 88: 390-396.

 [38] Abbasian M., Mahmoodzadeh F., Salehi R., Amirshaghaghi A., Chemo-photothermal therapy of cancer cells using gold nanorod-cored stimuli-responsive triblock copolymer. New Journal of Chemistry 2017;  41: 12777-12788.

 [39] Chen H., Chi X., Li B., Zhang M., Ma Y., Achilefu S., Gu Y., Drug loaded multilayered gold nanorods for combined photothermal and chemotherapy. Biomaterials Science 2014;  2: 996-1006.

[40] Ahani E, Montazer M, Toliyat T, Mahmoudi Rad M. A novel biocompatible antibacterial product: Nanoliposomes loaded with poly(hexamethylene biguanide chloride). Journal of Bioactive and Compatible Polymers. 2017;32(3):242-262.

[41] Ahani E, Montazer M, Toliyat T, Mahmoudi Rad M. Preparation of nano cationic liposome as carriermembrane for polyhexamethylene biguanide chloridethrough various methods utilizing higher antibacterialactivities with low cell toxicity. Journal of microencapsulation.2017;34(2);121-131.