Neurological toxicity of nanomaterials in the brain: Hazard effects of these materials in the central nervous system


1 North carolina a&t state university

2 National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran

3 Tissues and Biomaterials Research Group (TBRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran


Graphical Abstract

Neurological toxicity of nanomaterials in the brain: Hazard effects of these materials in the central nervous system


[1]        E. Ahani, M. Montazer, T. Toliyat, M. Mahmoudi Rad, T. Harifi. “Diverse Preparation of Nano Cationic Liposome as Carrier Membrane for Polyhexamethylene Biguanide Chloride Utilizing Higher Antibacterial Activities with Low Cell Toxicity”, Journal of Microencapsulation, 34 (2) (2017) 121-131.
[2]        E. Ahani, M. Montazer, T. Toliyat, M. Mahmoudi Rad. “A novel biocompatible antibacterial product: Nanoliposomes loaded with polyhexamethylene biguanide chloride”, Journal of Bioactive and Compatible Polymers, 32 (3) (2017) 242-262.
[3]        E. Ahani, M. Montazer, T. Toliyat, M. Mahmoudi Rad, N. Samadi, “Comparing size particle, release study and cytotoxicity activity of PHMB encapsulated in different liposomal formulations: neutral and cationic liposomes”, Bioengineering Research, 1(3) (2019) 1-6.
[4]        E. Ahani, M. Montazer, A. Rashidi. “Investigation of anti-bacterial properties of woolen fabrics loaded with PHMB (polyhexamethylene biguanide Hydrochloride)”. TECHNOLOGY OF TEXTILE JOURNAL, 7 (1) (2012) 91-98.
[5]        W. K. Boyes, R. Chen, Ch. Chen, R. A. Yokel, The neurotoxic potential of engineered nanomaterials, NeuroToxicology, 33 (4) (2012) 902–910.
[6]        J. Catalan-Figueroa, S. Palma-Florez, G. Alvarez, H. F. Fritz, M. O. Jara & J. O. Morales, Nanomedicine and nanotoxicology: the pros and cons for neurodegeneration and brain cancer, Nanomedicine, 11 (2) (2015) 1-17.
[7]        Ch. M. Powers, A. S. Bale, A. D. Kraft, S. L. Makris, J. Trecki, J. Cowden, A. Hotchkiss, and P. A. Gillespie, Developmental Neurotoxicity of engineered Nanomaterials: identifying Research Needs to Support Human Health Risk Assessment, Toxicological Sciences 134 (2) (2013) 225–242.
[8]        P. E. Leite, M. R. Pereira, J. M. Granjeiro, Hazard effects of nanoparticles in central nervous system: Searching for biocompatible nanomaterials for drug delivery, Toxicology in Vitro, 29 (7) (2015) 1653–1660.
[9]        A. P. Lan, J. Chen, Z. F. Chai, Y. Hu, The neurotoxicity of iron, copper and cobalt in Parkinson’s disease           through ROS-mediated mechanisms, Bimetals, 29 (2016) 665-678.
[10]       M. Zhou, L. Xie, Ch-J. Fang, H. Yang, Y-J. Wang, X-Y. Zhen, Ch-H. Yan, Y. Wang, M.g Zhao and Sh. Peng, Implications for blood-brain-barrier permeability, in vitro oxidative stress and neurotoxicity potential induced by mesoporous silica nanoparticles: effects of surface modification, RSC Adv., 6 (2016) 2800-2809.
[11]       Izadi, V., Shahri, P. K. and Ahani, H., 2020. A compressed-sensing-based compressor for ECG. Biomedical engineering letters, pp.1-9.
[12]       Surakanti, S. R., Khoshnevis, S. A., Ahani, H., & Izadi, V. (2019). Efficient Recovery of Structrual Health Monitoring Signal based on Kronecker Compressive Sensing. International Journal of Applied Engineering Research14(23), 4256-4261.
[13]       X. Feng, A. Chen, Y. Zhang, J. Wang, L. Shao, L. Wei, Central nervous system toxicity of metallic nanoparticles, International Journal of Nanomedicine, 10 (2015) 4321–4340.
[14]       B. Song, Y. L. Zhang, J. Liu, X. L. Feng, T. Zhou and L. Q. Shao, Is Neurotoxicity of Metallic Nanoparticles the Cascades of Oxidative Stress? Nanoscale Research Letters, 11 (29) (2016) 1-11.
[15]       Ch. Sun, N. Yin, R. Wen, W. Liu, Y. Jia, L. Hu, Q. Zhou, G. Jiang, Silver nanoparticles induced neurotoxicity through oxidative stress in rat cerebral astrocytes is distinct from the effects of silver ions, NeuroToxicology, 52 (2016) 210–221.
[16]       J. Skalska, L. Strużyńska, Toxic effects of silver nanoparticles in mammals – does a risk of neurotoxicity exist? Folia Neuropathologica, 53 (4) (2015) 281-300.
[17]       L. Xu, M. Dan, A. Shao, X. Cheng, C. Zhang, R. A. Yokel, T. Takemura, N. Hanagata, M. Niwa, D. Watanabe, Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood–brain barrier primary triple coculture model, International Journal of Nanomedicine, 10 (2015) 6105–6119.
[18]       M. Safari, S. Arbabi Bidgoli, S.M. Rezayat, Differential neurotoxic effects of silver nanoparticles: A review with special emphasis on potential biomarkers, Nanomedicine Journal., 3 (2) (2016) 83- 94.
[19]       L. Xu, A. Shao, Y. Zhao, Zh. Wang, C. Zhang, Y. Sun, J. Deng, and L. L. Chou, Neurotoxicity of Silver Nanoparticles in Rat Brain After Intragastric Exposure, Journal of Nanoscience and Nanotechnology, 15 (6) (2015) 4215–4223.
[20]       A. N. Begum, J. S. Aguilar, L. Elias, Y. Hong, Silver nanoparticles exhibit coating and dose-dependent neurotoxicity in glutamatergic neurons derived from human embryonic stem cells, NeuroToxicology, 57 (2016) 45–53.
[21]       A. Mirshafa, M. Nazari, D. Jahani, F. Shaki, Size-Dependent Neurotoxicity of Aluminum Oxide Particles: A Comparison Between Nano- and Micrometer Size on the Basis of Mitochondrial Oxidative Damage, Biol Trace Elem Res, 183 (2018) 261–269.
[22]       J. Wu, Ch. Wang, J. Sun and Y. Xue, Neurotoxicity of Silica Nanoparticles: Brain Localization and Dopaminergic Neurons Damage Pathways, ACS Nano, 5 (6) (2011) 4476– 4489.
[23]       N. Nalika & S. Parvez, Mitochondrial dysfunction in titanium dioxide nanoparticle- induced neurotoxicity, Toxicol Mech Methods, 25(5) (2015) 355–363.
[24]       V. Valdiglesias, C. Costa, V. Sharma, G. Kiliç, E. Pásaro, J. P. Teixeira, A. Dhawan, B. Laffon, Comparative study on effects of two different types of titanium dioxide nanoparticles on human neuronal cells, Food and Chemical Toxicology, 57 (2013) 352–361.
[25]       X. Deng, Q. Luan, W. Chen, Y. Wang, M. Wu, H. Zhang and Zh. Jiao, Nanosized zinc oxide particles induce neural stem cell apoptosis, Nanotechnology, 20 (11) (2009) 2-8.
[26]       S. Ansar, M. Abudawood, Sh. Shaker Hamed, Exposure to Zinc Oxide Nanoparticles Induces Neurotoxicity and Proinflammatory Response: Amelioration by Hesperidin, Biol Trace Elem Res,175 (2017) 360-366.